
Danil Annenkov, PhD student, DIKU

Supervisor: Martin Elsman, Associate Professor, DIKU

Verifying the generation of
payoff-language expressions

The HIPERFIT Prototype Project

● Integrates two HIPERFIT projects:
○ Contract DSL: certified domain-specific language;
○ FINPAR: parallel high-performance contract valuation implementation

● Features
○ OpenCL payoff function code generation from contract DSL;
○ high performance contract valuation using OpenCL pricer

implementation form FINPAR;
○ Web-interface with automatic web form generation based on Haskell

data types

Contract DSL*

● allows to express a large variety of financial contracts;
● supports multi-party contracts (we will focus only on more classic

two-parties contracts for valuation purposes);
● has a formal semantics;
● contract management and transformations are proven correct wrt.

specified semantics;
● contract DSL semantics along with all proofs are formalized in Coq proof

assistant.

*) Patrick Bahr, Jost Berthold, Martin Elsman. Certified Symbolic Management of Financial Multi-Party
Contracts, ICFP’2015.

Contract DSL Semantics

Contract semantics is represented as a partial function:

C⟦c⟧ : Env -> ExtEnv -> option Trace

where Trace is a mapping from time (days) to transfer of some amount
between parties:

Trace = ℕ -> Trans

Trans = Party -> Party -> Asset -> ℝ

Patrick Bahr, Jost Berthold, Martin Elsman. Certified Symbolic Management of Financial Multi-Party
Contracts, ICFP’2015.

Payoff Language

We define intermediate language (IL) inspired by traditional approaches to
payoff languages:

Inductive ILExpr : Set :=
| ILIf : ILExpr -> ILExpr -> ILExpr -> ILExpr
| FloatV : ℝ -> ILExpr
| Model : ObsLabel -> ℤ -> ILExpr
| ILUnExpr : ILUnOp -> ILExpr -> ILExpr
| ILBinExpr : ILBinOp -> ILExpr -> ILExpr -> ILExpr
| Payoff : ℕ -> Party -> Party -> ILExpr.

Payoff Language

● It’s easier to translate payoff IL to various target languages
● Certified translation from a contract DSL to payoff IL

○ define payoff IL semantics;
○ implement translation of the contract DSL to payoff IL;
○ prove correctness wrt the contract cashflow semantics.

Payoff Language Semantics

IL⟦e⟧: ILExtEnv -> Disc -> Party -> Party -> option ILVal

where Disc represents a discounting function from day offset to discount rate

Disc = ℕ -> ℝ

ILVal is defined as

Inductive ILVal : Set :=
| ILBVal : ᯙ -> ILVal
| ILRVal : ℝ -> ILVal.

Translating Contracts to Payoffs

Two “sublanguages” in contract DSL:
● expressions
● contracts

They are both translated to the single intermediate expression language:

ᶦ⟦e⟧ : ℕ -> ILExpr
ᶦ⟦c⟧ : ℕ -> ILExpr
Translation functions take care of aggregation of contract cashflows, adding

relative time shifts etc.

Translation correctness*

If C⟦c⟧ env extC = trace and

 ᶦ⟦c⟧ = eIL and

 IL⟦eIL⟧ extIL = v and

 assuming that environments extIL and extC agree at all points
then

 disc(t)*trace(t) = v

where h is contract horizon, disc - discount function, ᶦ⟦c⟧ - translation from
contract DSL to IL.

* Some details are deliberately omitted.

Code extraction

● Translation functions ᶦ⟦c⟧ and ᶦ⟦e⟧ are “extracted” from Coq as Haskell
code.

● Extracted translation code works nicely with certified code for contract
analysis and transformation.

● Payoff IL is mapped relatively straightforwardly to a subset of language
constructs in other languages, such as OpenCL, Haskell, and Futhark.

Valuation engine

● various valuation engines can be used to calculate contract’s price using
extracted payoff function;

● an example: hand-tuned high-performance OpenCL implementation from
FINPAR project;

● map payoff language expressions to the subset of OpenCL -> generate
OpenCL code -> “fuse” generated code into a valuation engine.

“Fusing” code into the valuation engine
inline
void trajectory_inner(
 const UINT num_cash_flows, // number of discounts
 const UINT model_ind, // the model index
 const UINT disct_index,// index of the discount
 const REAL amount, // update with amount
 __constant REAL* md_discts,
 __local REAL* local_vhat
) {
 // some code ...
}
inline
void payoffFunction(
 const UINT model_num, // the index of the current model
 const UINT num_under, // the number of underlyings
 const UINT num_cash_flows, // the number of discounts
 const UINT num_pricers,// the number of deterministic pricers
 __constant REAL* md_discts, // [num_models][num_cash_flows] discounts
 __constant REAL* md_detvals, // [num_models, num_det_pricers] pricers

const REAL* inst_traj, // [num_dates, num_under] current trajectory
 __local REAL* vhat // [model_num] Accumulated per-model price
) {
{|CODE|} // code placeholder
}

Contract DSL

Payoff language

OpenCL code

Future work

● implement and prove correctness of translation from payoff
language to target languages (OpenCL, Futhark etc.);

● integrate certified translation code with Prototype;
● add support for more features of the contract DSL

○ add loop-like constructs to the payoff language (for now, IfWithin is
compiled into nested ifs);

○ add support for accumulators.

Thank you!

Questions?

