
Generation Technique for Django MVC Web
Framework Using the Stratego Transformation

Language

D.V. Annenkov*, E.A. Cherkashin**
* National Research Irkutsk State Technical University, Irkutsk, Russia

** Institute of System Dynamics and Control Theory SB RAS, Irkutsk, Russia
annenkov@ib-soft.ru, eugeneai@icc.ru

Abstract – Domain-Specific Languages (DSLs) allow for
raising the level of abstraction, improving development
productivity, and establishing an equitable communication
between domain experts and developers. Language-oriented
programming (LOP) is a new paradigm based on DSL
construction. LOP facilitates separating domain-specific
and technology-specific aspects of a system under
development sharing some ideas with model-driven
architecture and model-driven development. Spoofax
Language Workbench is used as a primary tool for DSL
design in the present work. It is based on Stratego (a
transformation language with programmable rewriting
strategies), and Syntax Definition Formalism (a language
for grammar definition). As an example of a DSL, a simple
textual language for domain modelling is considered.
Rewriting rules and strategies are used as a uniform
approach to generate, validate, and make arbitrary abstract
syntax tree transformations of the DSL code. Rules for code
generation are implemented using so-called “string
interpolation” technique. The source DSL code translated
into python code that can be deployed within the Django
web framework, resulting in a web-application with the
create/update/delete functionality on a corresponding
database. The developed DSL is an example of the
“definition by transformation” approach. Adding more
domain-specific features to the DSL would allow for better
practical applicability.

I. INTRODUCTION

Language-oriented programming (LOP) can be
considered as a style of software development which
involves the use of domain-specific languages (DSLs)
instead of general-purpose languages (GPLs) [1]. DSLs
allow for capturing requirements in the users’ terms. A
DSL is a programming language designed for a particular
domain. Because of the focusing on a specific class of
problems, it allows expressing the domain in more precise
terms, as compared to GPL and other modelling tools such
as UML.

There is an interconnection between model-driven
development (MDD) and LOP: both of them tends to
reduce the gap between the problem domain and its
implementation. It is a step in raising the level of
abstraction after GPLs such as Java, C#, Python etc
(Fig.1). LOP can be considered as a new programming
paradigm that tends to unite such approaches as generative
programming, model-driven approaches (Model-Driven

Development, MDD, Model Driven Architecture, MDA),
intentional programming [2].

The main advantages of LOP:

 improved developers productivity;

 communication with domain experts;

 a declarative approach to programming (define
what one is going to obtain, not how it is to be
obtained).

In order to support language-oriented programming,
one needs a development tool that is known as a language
workbench [3]. Language workbenches provide tools for
defining DSLs (parsing, transformation, code generation),
integration between DSLs, rich editing environment (code
highlighting, static analysis, code completion and other
modern IDE features).

There is a number of different approaches to how to
develop and use a DSL. The comparison of some
approaches, such as internal DSL, compile-time
metaprogramming and strategic term rewriting is
presented in [4]. The xText framework is one of the
relatively wide-used tools for textual external DSL
development. It works on the Eclipse platform and uses
EBNF for syntax definition with ANTLR as a parser
generator [5]. Another approach is projectional editors
(PE) implemented in JetBrains Metaprogramming System
(MPS) [6]. Projectional editors serve as an alternative to
source editors. In MPS developer deals with an abstract
syntactic tree (AST) directly using PE to edit the tree.

In this article, we consider an approach for DSL
development based on strategic term rewriting. Spoofax
language workbench is used as a primary tool for DSL

Figure 1. Raising the level of abstraction from GPL to DSL

building. Spoofax is based on Stratego, which is a
transformation language with programmable rewriting
strategies, and Syntax Definition Formalism (SDF) [7], as
a language for grammar definition. In Stratego, DSLs are
implemented through term rewriting, where a source DSL
program is transformed into a target program (Python,
Java etc.) using a set of transformation rules and
strategies.

Spoofax language workbench covers all the main
aspects of DSL construction [8]:

 grammar definition and parsing;

 semantic analysis (DSL program validation) ;

 DSL code transformations;

 target code generation;

 integration of the DSL and its tools into an IDE.

One of the best practices of DSL development is that
the semantic model is a part of a DSL. The term “semantic
model” is used in this work in the same sense as in [1]: the
semantic model is a library or framework that the DSL
populates. The semantic model provides a runtime context
of the code generated from the DSL.

We use the Django web framework as a semantic
model. Source DSL code is translated to Python code that
can be deployed within this web framework, resulting in a
web-application administration subsystem with the create/
update/delete functionality on a corresponding database.

II. DEFINING THE DSL

We consider a simple textual DSL which describes a
system under development as a set of related entities.1 The
DSL may be used as a programming language or as a
modelling language. The difference between the
modelling and programming properties of DSLs is
somewhat blurred and not precisely defined. Using the
criteria proposed in [9] we can define our DSL to be
closer to a modelling language rather than a programming
language.

Customer Relationship Management is considered as a
problem domain. We model primary data describing
customers and their contacts using the DSL. Let us start
with an example.

entity Customer
 name : String
 description : String
 website : URL
 repr name
end

This fragment of code represents a Customer entity
with attributes name, description and website.
The repr keyword is used to define a string
representation of the entity. In this example the value of
the name field used as a string representation of the
Customer entity.

Entities can be related using many-to-one associations.
For example:

1 The source code is available at
https://github.com/annenkov/entity-model

entity Contact
 name : String
 phone : String(11)
 email : Email
 customer -> Customer
end

The Contact entity associated with the Customer
entity using the customer property.

Using Stratego we can define the grammar of the DSL
using the SDF notation:

context-free start-symbols
Start

 context-free syntax
 "module" ID Definition* -> Start {cons("Module")}
 "entity" ID Property* Repr? "end" -> Definition
 {cons("Entity")}
 "repr" ID -> Repr {cons("Repr")}
 ID ":" Type -> Property {cons("Property")}
 ID "->" EntityAssoc -> Property {cons("Property")}
 ID -> Type {cons("Type")}
 ID "(" PINT ")" -> Type {cons("Type")}
 ID -> EntityAssoc
 {cons("EntityAssoc")}

Productions are annotated with a constructor name n
to uniquely identify them in the abstract syntax tree using
the {cons(n)} annotation. ID represents an identifier
consisting of chars, digits and underscore symbols:

[a-zA-Z][a-zA-Z0-9_]* -> ID

PINT represents positive integer with no leading
zeros:

[1-9][0-9]* -> PINT

Stratego generates corresponding algebraic signatures
that describe the abstract syntax of the DSL.

signature
 constructors
 EntityAssoc : ID -> EntityAssoc
 Type : ID * INT -> Type
 Type : ID -> Type
 Property : ID * EntityAssoc -> Property
 Property : ID * Type -> Property
 Repr : ID -> Repr
 Entity : ID * List(Property) * Option(Repr) →
 Definition
 Module : ID * List(Definition) -> Start
 : String -> ID
 : String -> PINT

Now we can define rewriting rules for transformation
and code generation. A rewrite rule has the form

R: p1 → p2, where R is the rule’s name, p1 is a
left-hand side pattern and p2 is a right-hand side pattern.
Patterns are terms with variables.

Let us write a rewriting rule for a top-level form of the
DSL – a module. A module has a name and contains one
or more entities.

to-django-model:
 Module(x, d*) ->
 $[# -*- coding: utf-8 -*-

 from django.db import models

 [d'*]
]
 with
 d'* := <map(to-django-model)> d*

The left side of to-django-model is a pattern
Module(x, d*). The pattern matches against AST
nodes and, if successful, x binds a module name and d* –

https://github.com/annenkov/entity-model

a list of entities. Body of the rule represents a code
template using a string interpolation technique. The text
within $[...] block remains unchanged, except the
block in the square brackets (like [d'*]) that is
interpreted as a variable. In the to-django-model
rule, the above variable d'* is assigned in a “with”
clause. The expression <map(to-django-model)>
d* is similar to the map function in functional
languages: to-django-model rule applied to every
item in list d*.

Let us define rules for translating Entity.

to-django-model:
 Entity(x, p*, r) ->

$[class [x](models.Model):
 [p'*]
 def __unicode__(self):
 return "[x]: {0}".format([to-string])
]
 with
 to-string := <to-string-repr> r;
 p'* := <map(to-django-model)> p*

Here, we use the same name to-django-model
for the rewriting rule, but this rule has a different pattern
to match. In this case, a successful match binds x an entity
name, p* a property list and r a repr field. The r
value is optional and can be either None() or
Some(Repr(name)). And we have two rules for these
cases:

to-string-repr:
Some(Repr(name)) ->
$[self.[name]]

to-string-repr:
None() ->
$[self.pk]

The rules can be read as follows: use a field with a

specified name or use the pk field, if no repr provided.
The variable p* is used to obtain transformed code for
each property using the <map(to-django-model)>
strategy with the following rule:

to-django-model:
Property(x, t) ->

 $[[x] = [field_type]
]
 with
 field_type := <to-django-model> t

And at the last step is to define rules for every type
used in our DSL. Every rule will translate our DSL types
to the corresponding model field types of the Django web
framework.

to-django-model:
 Type("String") ->
 $[models.CharField(max_length=256)]
to-django-model:
 Type("String", len) ->
 $[models.CharField(max_length=[len])]
to-django-model:
 Type("Int") ->
 $[models.IntegerField()]
...

Other type-translating rules have the same form and
we omit them here for brevity.

Association fields are handled by a separate rule:

 to-django-model:
EntityAssoc(e) -> $[models.ForeignKey([e])]

Applying the to-django-model rule to the top-
level form of the DSL (to a module) gives a complete
module for the Django web framework.

Similarly, we can define rules for translation to the
Django admin settings. Also, we need an additional rule to
write the generated code to Python source code files:

generate-django-app:
 (selected, position, ast, path, project-path) ->
 None()
 with
 module_name := <get-module-name> selected;
 models := <to-django-model> selected;
 models_file :=
 $[[<project-path>]
[module_name]/models_generated.py];
 <debug> $[Writing [models_file]];
 mf_handle := <fopen> (models_file, "w");
 <fclose> <fputs> (models, mf_handle);
 amdin_file :=
 $[[<project-path>]
[module_name]/admin_generated.py];
 <debug> $[Writing [amdin_file]];
 af_handle := <fopen> (amdin_file, "w");
 <fclose> <fputs>
 (<to-django-admin> selected, af_handle)

The Stratego language allows one to define side-
effects in rewriting rules. In the rule above, we use the
<fputs> strategy to write the result of the code
generation and <debug> strategy to provide some
information to the console.

One can assign the project-path variable to a
path to the Django project and set this rule on “save”
action using Spoofax which is activated on saving changes
in the source code. As a result, all changes to the DSL
code will be reflected in the files of the Django project.

III. CODE CHECKING AND COMPLETION

One of the great advantages of strategic term rewriting
techniques is the ability to express different aspects of a
DSL, such as code transformation, code validation and
context completion using the same notation. Let us
consider the support of code checking and completion
using the Stratego language.

Spoofax workbench generates sample rules for code
analysis when creating a project. The main rule is as
follows:

editor-analyze:
 (ast, path, project-path) ->
 (ast, errors, warnings, notes)
 with
 editor-init;
 analyze;
 errors :=
 <collect-all(constraint-error, conc)> ast;
 warnings :=
 <collect-all(constraint-warning, conc)> ast;
 notes :=
 <collect-all(constraint-note, conc)> ast

One can add rules such as constraint-error,
constraint-warning, constraint-note to
define custom error checking, warning and notes. The
collect-all(s, un) strategy collects all subterms
where strategy s succeed with a user-defined union
operator un. In this case, the union operator is a list
concatenation.

Consider a rule that checks whether the property
specified in repr clause belongs to the entity.

constraint-error:
 Entity(x, p*, Some(Repr(prop))) ->
 (prop, $[[prop] is not a [x] property])
 where
 not(<some(?Property(prop, _))> p*)

This is just an ordinary rewriting rule that rewrites an
Entity node to a tuple, consisting of a property name
and an error message. This rewriting succeeds only if the
condition in the where clause succeeds. The rule
not(<some(?Property(prop, _))> p*) used
as condition reads as follows: succeed only if there is no
property named prop that belongs to the entity. The
expression ?Property(prop, _) is a pattern to
match. The some(s) strategy applies the parameter
strategy s to as many direct subterms as possible and at
least one. The application of some(s) strategy fails if no
successful applications of the parameter strategy s occurs.

Code completion or autocomplete allows predicting of
code fragments without the user actually typing them
completely. It simplifies and speeds up the development
in text-oriented environments. Spoofax provides the
ability to define custom code completion rules for DSLs.

Consider a simple rule that defines autocompletion for
built-in types:

editor-complete:
 (Type(COMPLETION(prefix)), position, ast, path,
project-path) ->
 ["String", "Int", "Email", "URL", "Date"]

Or another rule for completion of association entities:

editor-complete:
 (EntityAssoc(COMPLETION(prefix)), position, ast,
path, project-path) -> proposals
 where
 proposals :=
 <collect-all(?Entity(<id>, _, _), conc)> ast

The ?Entity(<id>, _, _) pattern is a term
projection that used to extract the entity name. The
collect-all strategy is used to get all entity names
and put them into a list which is assigned to proposals
variable.

Stratego provides a powerful pattern matching engine.
Combined with special strategies, it allows making AST
queries. Consider some examples.

get-all-string-props =
 collect-all(?Property(_,Type("String")), conc)
get-all-entities-with-2-props =
 collect-all(
 where(?Entity(_,<length => 2>,_)), conc)
get-all-entities-assoc-with-customer =
 collect-all(
 where(?Entity(_,
 <some(?Property(_,EntityAssoc("Customer")))>,_)),
 conc)

The get-all-string-props collects all
properties that have the String type. Query get-all-
entities-with-2-props returns all entities having
exactly two properties. We use the term projection
technique to impose a constraint on properties count. To
test a condition (but not to rewrite a node) where strategy
is used. The get-all-entities-assoc-with-
customer query is slightly more complicated. It returns
all the entities associated with the Customer entity.
Here we use the some strategy with the ?Property(_,
EntityAssoc("Customer")) pattern to find

associations with Customer if any. One can use similar
querying strategies to perform analysis and validation of
the source DSL code.

IV. CONLUSION

Rewriting language fits well to DSL development
activity using “language definition by transformation”
approach. With good support of the IDE, one can get a
productive environment for DSL development.

Developed DSL is an example of the “definition by
transformation” approach. It can be used for rapid
prototyping of Django applications. To get real benefits
from the DSL one need to add more domain-specific
features to it. For example, DSL can be extended with the
ability to add constraints imposed by the domain.
Constraints can be translated into runtime validation rules
for input data using the Django form-handling library.
Some constraints can be translated not only to Python
code. One can perform client-side validation by
JavaScript code and server-side validation by Python code
generated from the same constraint. The DSL allows
defining business rules in a single place. Since in the
general case, the rules implemented or generated as source
code are located in various modules within a Django
project, it is not easy to see the overall picture of the
defined business rules from that code. For that reason, the
business rules represented in the DSL give a better way of
system modelling.

Other domain-specific features also can be added
easily using rewriting rules with the full support of IDE-
like features from Spoofax workbench. The approach
allows one to use the DSL as a fully-featured language for
the domain-driven design approach.

REFERENCES

[1] Martin Fowler, “Domain Specific Languages”. Addison-Wesley
Professional, 2010.

[2] Sergey Dmitriev. “Language Oriented Programming: The Next
Programming Paradigm”. URL: [2]
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/ (access
date: 30.01.2013).

[3] Martin Fowler, “Language Workbenches: The Killer-App for
Domain Specific Languages?” 2005.
URL:http://www.martinfowler.com/articles/languageWorkbench.h
tml (access date: 30.01.2013).

[4] Naveneetha Vasudevan, Laurence Tratt. “Comparative Study of
DSL Tools”, Electronic Notes in Theoretical Computer Science
(ENTCS), Volume 264, Issue 5, July, 2011, 103-121p.

[5] “xText page on Eclipse platform” web-site. URL:
http://www.eclipse.org/Xtext/ (access date: 30.01.2013).

[6] “MPS page on JetBrains” web-site. URL: [6]
http://www.jetbrains.com/mps/ (access date: 30.01.2013).

[7] Mark van den Brand, Paul Klint, Jurgen Vinju. “The Syntax
Definition Formalism SDF”. CWI, 2007. URL:
http://homepages.cwi.nl/~daybuild/daily-books/learning-about/sdf
/sdf.pdf (access date: 30.01.2013)

[8] Lennart C. L. Kats, Eelco Visser. “The Spoofax Language
Workbench. Rules for Declarative Specification of Languages and
IDEs”. OOPSLA '10 Proceedings of the ACM international
conference on Object oriented programming systems languages
and applications, 2010, pp. 444-463.

[9] Yu Sun, Zekai Demirezen, Marjan Mernik, Jeff Gray, Barrett
Bryant. “Is My DSL a Modeling or Programming Language?”
University of Alabama at Birmingham, USA, 2008.

	I. Introduction
	II. Defining the DSL
	III. Code checking and completion
	IV. Conlusion
	References

