
1

Deep and Shallow Embeddings in Coq

Danil Annenkov Bas Spitters

Aarhus University, Concordium Blockchain Research Center

TYPES
June 13, 2019

Oslo

Danil Annenkov, Bas Spitters Deep and Shallow Embeddings in Coq

2

Motivation

We want to reason about functional languages using proof assistants.

New challenge: smart contract languages.

But many modern smart contract languages have a functional core.

We need a convenient and principled way of embedding functional
languages into a proof assistant.

Danil Annenkov, Bas Spitters Deep and Shallow Embeddings in Coq

3

Deep embedding VS shallow embedding in proof assistants

Deep embedding:

AST as an algebraic data type.

Semantics: big step, small step, definitional interpreter etc.

Full control over evaluation, features, etc.

Suitable for meta-theoretical reasoning.

Shallow embedding:

Proof assistants usually come with a built-in functional language (a
host language).

Programming language constructs can be represented using the host
language constructs.

Works better if the languages are similar.

Convenient for proving properties of concrete programs.

Danil Annenkov, Bas Spitters Deep and Shallow Embeddings in Coq

4

Deep embedding AND shallow embedding

We want both!

AST for a language we want to reason about: for meta-theory.

Some way of converting AST to functions in Coq.

Ways of converting AST to functions:

Interpret directly in NbE style (eval : Env Γ→ Expr Γ A → A)

7 complicated for the features we want in our language;
7 resulting program cab be far from the “natural” representation.
3 direct way of proving soundness of the embedding (eval is a
function).

Use meta-programming approach:

3 “naturally”-looking programs;
3 flexible in terms of language features;
7 proofs of soundness require formalised meta-theory of the host
language (we will address this later)

Danil Annenkov, Bas Spitters Deep and Shallow Embeddings in Coq

5

Our approach

We use meta-programming facilities of MetaCoq.

Smart Contract AST −→ MetaCoq AST
unquote−−−−→ Coq function.

To prove soundness we use formalisation of Coq’s meta-theory in
Coq.

Why not hs-to-coq (or coq-of-ocaml)?

We want stronger correctness guarantees.

We want meta-theory to be formalised as well.

Meta-theory should be “in sync” with the representation in Coq.

Danil Annenkov, Bas Spitters Deep and Shallow Embeddings in Coq

5

Our approach

We use meta-programming facilities of MetaCoq.

Smart Contract AST −→ MetaCoq AST
unquote−−−−→ Coq function.

To prove soundness we use formalisation of Coq’s meta-theory in
Coq.

Why not hs-to-coq (or coq-of-ocaml)?

We want stronger correctness guarantees.

We want meta-theory to be formalised as well.

Meta-theory should be “in sync” with the representation in Coq.

Danil Annenkov, Bas Spitters Deep and Shallow Embeddings in Coq

6

MetaCoq project

Adds metaprogramming facilities to Coq (quote/unquote).

Implements the kernel of Coq.

Develops meta-theory of Coq (typing, reduction, etc.)

Allows for writing Coq plugins within Coq.

Allows for implementing syntactic translations.

Allows for proving correctness of plugins, translations, etc.

We will use MetaCoq for embedding of a functional core of a smart
contract language.

Danil Annenkov, Bas Spitters Deep and Shallow Embeddings in Coq

6

MetaCoq project

Adds metaprogramming facilities to Coq (quote/unquote).

Implements the kernel of Coq.

Develops meta-theory of Coq (typing, reduction, etc.)

Allows for writing Coq plugins within Coq.

Allows for implementing syntactic translations.

Allows for proving correctness of plugins, translations, etc.

We will use MetaCoq for embedding of a functional core of a smart
contract language.

Danil Annenkov, Bas Spitters Deep and Shallow Embeddings in Coq

7

The Oak-light Language

We keep our embedded functional language close to Oak — a smart
contract language developed at the Concordium Foundation.

Inductive expr : Set :=
| eRel : nat → expr

| eVar : name → expr

| eLambda : name → type → expr → expr

| eLetIn : name → expr → type → expr → expr

| eApp : expr → expr → expr

| eConstr : inductive → name → expr

| eConst : name → expr

| eCase : (inductive ∗ nat) → type → expr →
list (pat ∗ expr) → expr

| eFix : name → name → type → type →
expr → expr.

Danil Annenkov, Bas Spitters Deep and Shallow Embeddings in Coq

8

Semantics of Oak-light

We formalise the semantics of the language in the
definitional-interpreter style.

We define our interpreter using a fuel idiom: by structural recursion
on an additional argument (a natural number).

The interpreter works for both named and nameless representations
of terms.

We define a translation of Oak-light to MetaCoq terms.

We want to show that our embedding is sound on terminating
programs.

Danil Annenkov, Bas Spitters Deep and Shallow Embeddings in Coq

9

Examples

(* Define a program using Custom Entries for parsing *)

Definition plus_syn : expr :=
[| fix "plus" (x : Nat) : Nat → Nat :=

case x : Nat return Nat → Nat of

| Z → \y : Nat → y

| Suc y → \z : Nat → Suc ("plus" y z) |].

(* Unquoting the translated syntax into a Coq function *)

Make Definition my_plus :=
Eval compute in (expr_to_term (indexify plus_syn)).

(* Proving correctness by comparing with Coq’s addition on nat *)

Lemma my_plus_correct n m : my_plus n m = n + m.
Proof. induction n;simpl;auto. Qed.

(* Computing with the interpreter *)

Compute (eval 10 [| {plus_syn} 1 1 |]).

Danil Annenkov, Bas Spitters Deep and Shallow Embeddings in Coq

10

Soundness

Computational soundness: we compare our interpreter with the
call-by-value evaluation (CbV) relation of MetaCoq.

The CbV relation is a sub-relation of the reflexive transitive closure
of the one-step Coq’s reduction relation.

Complications: closures should be converted to expression by
substituting the closed environments, n-ary application of MetaCoq
vs unary in our language.

Danil Annenkov, Bas Spitters Deep and Shallow Embeddings in Coq

11

Conclusion

Deep embedding: syntax and (executable) semantics for Oak-light.

Shallow embedding: programs in Gallina language of Coq from the
Oak-light syntax.

Computational soundness proof — WIP.

Some small things: customised embedded syntax using
Custom Entries notation feature.

Danil Annenkov, Bas Spitters Deep and Shallow Embeddings in Coq

12

Future Work

Develop more meta-theory of Oak-light.

Add support for primitives: bounded integers, addresses, hashes, etc.

Take into account a cost semantics and reasoning about “gas”.

Integrate with the execution framework for reasoning about
inter-contract communication.

Danil Annenkov, Bas Spitters Deep and Shallow Embeddings in Coq

