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Motivation

We want to reason about functional languages using proof assistants.

New challenge: smart contract languages.

But many modern smart contract languages have a functional core.

We need a convenient and principled way of embedding functional
languages into a proof assistant.
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Deep embedding VS shallow embedding in proof assistants

Deep embedding:

AST as an algebraic data type.

Semantics: big step, small step, definitional interpreter etc.

Full control over evaluation, features, etc.

Suitable for meta-theoretical reasoning.

Shallow embedding:

Proof assistants usually come with a built-in functional language (a
host language).

Programming language constructs can be represented using the host
language constructs.

Works better if the languages are similar.

Convenient for proving properties of concrete programs.
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Deep embedding AND shallow embedding

We want both!

AST for a language we want to reason about: for meta-theory.

Some way of converting AST to functions in Coq.

Ways of converting AST to functions:

Interpret directly in NbE style (eval : Env Γ→ Expr Γ A → A)

7 complicated for the features we want in our language;
7 resulting program cab be far from the “natural” representation.
3 direct way of proving soundness of the embedding (eval is a
function).

Use meta-programming approach:

3 “naturally”-looking programs;
3 flexible in terms of language features;
7 proofs of soundness require formalised meta-theory of the host
language (we will address this later)
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Our approach

We use meta-programming facilities of MetaCoq.

Smart Contract AST −→ MetaCoq AST
unquote−−−−→ Coq function.

To prove soundness we use formalisation of Coq’s meta-theory in
Coq.

Why not hs-to-coq (or coq-of-ocaml)?

We want stronger correctness guarantees.

We want meta-theory to be formalised as well.

Meta-theory should be “in sync” with the representation in Coq.
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MetaCoq project

Adds metaprogramming facilities to Coq (quote/unquote).

Implements the kernel of Coq.

Develops meta-theory of Coq (typing, reduction, etc. )

Allows for writing Coq plugins within Coq.

Allows for implementing syntactic translations.

Allows for proving correctness of plugins, translations, etc.

We will use MetaCoq for embedding of a functional core of a smart
contract language.
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The Oak-light Language

We keep our embedded functional language close to Oak — a smart
contract language developed at the Concordium Foundation.

Inductive expr : Set :=
| eRel : nat → expr

| eVar : name → expr

| eLambda : name → type → expr → expr

| eLetIn : name → expr → type → expr → expr

| eApp : expr → expr → expr

| eConstr : inductive → name → expr

| eConst : name → expr

| eCase : (inductive ∗ nat) → type → expr →
list (pat ∗ expr) → expr

| eFix : name → name → type → type →
expr → expr.
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Semantics of Oak-light

We formalise the semantics of the language in the
definitional-interpreter style.

We define our interpreter using a fuel idiom: by structural recursion
on an additional argument (a natural number).

The interpreter works for both named and nameless representations
of terms.

We define a translation of Oak-light to MetaCoq terms.

We want to show that our embedding is sound on terminating
programs.
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Examples

(* Define a program using Custom Entries for parsing *)

Definition plus_syn : expr :=
[| fix "plus" (x : Nat) : Nat → Nat :=

case x : Nat return Nat → Nat of

| Z → \y : Nat → y

| Suc y → \z : Nat → Suc ("plus" y z) |].

(* Unquoting the translated syntax into a Coq function *)

Make Definition my_plus :=
Eval compute in (expr_to_term (indexify plus_syn)).

(* Proving correctness by comparing with Coq’s addition on nat *)

Lemma my_plus_correct n m : my_plus n m = n + m.
Proof. induction n;simpl;auto. Qed.

(* Computing with the interpreter *)

Compute (eval 10 [| {plus_syn} 1 1 |]).
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Soundness

Computational soundness: we compare our interpreter with the
call-by-value evaluation (CbV) relation of MetaCoq.

The CbV relation is a sub-relation of the reflexive transitive closure
of the one-step Coq’s reduction relation.

Complications: closures should be converted to expression by
substituting the closed environments, n-ary application of MetaCoq
vs unary in our language.
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Conclusion

Deep embedding: syntax and (executable) semantics for Oak-light.

Shallow embedding: programs in Gallina language of Coq from the
Oak-light syntax.

Computational soundness proof — WIP.

Some small things: customised embedded syntax using
Custom Entries notation feature.
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Future Work

Develop more meta-theory of Oak-light.

Add support for primitives: bounded integers, addresses, hashes, etc.

Take into account a cost semantics and reasoning about “gas”.

Integrate with the execution framework for reasoning about
inter-contract communication.
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