
Information Systems Framework Synthesis on the

Base of a Logical Approach

E.A. Cherkashin*, V.V.Paramonov*, R.K.Fedorov*, I.N.Terehin**, E.I.Pozdnyak***, D.V.Annenkov***

*

 Institute of System Dynamics and Control Theory SB RAS, Irkutsk, Russia

** Institute of Mathematics, Economics and Informatics of Irkutsk State University, Irkutsk, Russia

*** National Research Irkutsk State Technical University, Irkutsk, Russia

{eugeneai, slv, fedorov}@icc.ru, {i.terhin, evgenij.pozdnyak}@gmail.com, annenkov_d@mail.ru

Abstract - We consider an approach to the information

system framework synthesis. This approach implements

OMG’s Model Driven Architecture transformation on the

base of combination of logical and imperative programming

languages. Information system is modeled using UML Class

Diagram. The transformation procedures are represented as

rules and source code templates. The generated framework

is a set of source code modules, which form libraries for

further development. An example of approach application

and further improvement of the transformation

implementation are considered.

I. INTRODUCTION

Information systems (IS) at present are constructed on
the base of a common scheme, where IS consists at least
of the following three subsystems:

 Data Warehouse (Storage) provides persistent
data layer for program objects, storage formats,
and productive access to the stored data.

 Application Control Layer, which usually is
referred to as business-logics layer; it is a domain
object interaction model implemented as a
program. The layer mainly realizes changing the
warehouse data, providing the soundness with
respect to domain.

 User Interface represents stored and processed
data for users and propagates events initiated by
users to application control layer.

Most of the information systems also have analytical and
report generation subsystems.

At present there are popular approaches used in
construction of complex IS, rising development
performance, namely

 Component architectures and environments,
which allow high code reuse,

 Visual modeling of various aspects of the project
under development followed by a code
generation.

Complex environments such as SAP R/3, JavaBeans,
EJB, CORBA, COM/DCOM/ActiveX, .Net are examples
of the first approach. Their libraries include professional
grade relatively abstract implementations of key

subsystems. Developers combine and specify predefined
behavior of the library modules to the problem domain.
We consider that Rapid Application Development (RAD)
systems belong to the component environments. Famous
examples of RAD-systems are Borland Delphi/C++ and
their contemporary derivatives, as well as Microsoft
Visual Studio.

Visual modeling techniques, e.g. Computer Aided
Software Engineering (CASE), allow one to deal with
complex systems and projects, representing them as an
abstract formalized model. CASE-systems use UML to
model IS implemented in object-oriented programming
and storage environments. CASE instrumental software
has code generation routines to convert visual models into
source code modules. Usually, the generation routines are
mutually independent and represent a viewpoint of CASE-
system manufacturer to the process of the visual model
representation. There is no standard approach to user
interface generation in popular CASE-systems.

Visual modeling is intended for takeover the
complexity problem during software design and
manufacturing, as well as it is a way of formalized
communication between developers and customers. Model
Driven Architecture (MDA) [1] is a further development
of CASE-system aimed to provide solution for the
following problems of IS development:

1. Rapid development of software construction
technologies and programming techniques, results
in frequent change of software development
platforms and accumulation of legacy source and
binary code.

2. Necessity to support a number of parallel versions
of the software on various hardware platforms and
operating systems; for example, most of popular
Internet services have applications for mobile
platforms (iOS, Android).

3. Reuse of models and corresponding
implementation source code in new projects, and
accumulation of formalized knowledge on
designing and implementation of IS subsystems.

Key concepts of MDA are CIM, PIM, PSM, and
PDM. Computation Independent Model (CIM) reflects
software’s external requirements – its interfaces. CIM
hides internal structural elements, and therefore can be
used to define specifications and checking requirements.

 The research is supported by Russian Foundation of Basic Research,

grant No 10-07-00051-a.

Applied Internet and Information Technologies 2012, REGULAR PAPERS

Page 241 of 502

Platform Independent Model (PIM) is a model of the
software reflecting most of the structural and some
semantic aspects of the software, but this model contains
no information about implementation of the structures on
the target program architecture. UML Class Diagram
which is extended with some tag values and additional
stereotypes is a relatively common example of PIM. The
extension (marking) allows one to denote implementation
nuances for structures. Platform Specific Model (PSM) is
a model, which can be implemented as a source code of
the subsystems, e.g., it could be a physical structure of a
relational database, which is directly (algorithmic or by
means of code templates) translated into DDL SQL-
requests.

MDA formalizes part of Software Life Cycle concept
[2], which reflects a path from domain to results of
implementation stage (see fig.1). Initially an idea of a
program is proposed. On the first step basic terms and
functionality requirements are iteratively collected, which
correspond to MDA’s CIM. The next step is a
requirements analysis, which results in forming a general
project outline corresponding to PIM. The developer’s
design activity results in detailed system design, i.e., PSM,
followed by the implementation stage of the software
components.

MDA is a methodology for developing software by
means of partial automatic source code generation of IS
from visual models, so it can be considered as an approach
to generative programming [3,4]. The main distinction
from generic CASE-systems is that the code generation
routines are not fixed and can be extended and adapted to
the project requirements and developers’ way of structures
and functions implementation. It can, e.g., be adapted to
describe even IS based on component architectures.

The transformation of the PIM into PSMs is carried
out under control of a Platform Description Model (PDM).
PDM contains information and algorithms of PIM’s
structure analysis and generation of corresponding data
structures in PSMs. Sometimes PSM is understood as
specific variant of PIM. The tag values and stereotypes are
used to direct the transformation of PIM’s structures into
certain frames.

The aim of our research is to create a complex

integrative MDA technology to support designers and

programmers with flexible transformation technique,
which is by nature adaptive to their peculiar way of
software development. Especial interest for us is
adaptation of the MDA to extreme and agile
programming. This paper devoted to consider our
experience of an approach to transformation
implementation based on substantial use of a local
language and rule-based inference systems.

II. TRANSFORMATION IMPLEMENTATION

There are a number of approaches to the
transformation implementation. Algorithmic approach,
where all the transformation procedures are implemented
with an imperative programming language; XSLT
transformations allow to represent transformation as
production rules; graph theory and graph transformation;
usage of domain specific language [5]. We use logical
approach to define transformation as a set of productions
and a pattern-directed inference engine [6] and a
transformation scenario.

Patterns are represented as a mix of Prolog and Python
programs. Pattern query is a Prolog rule located in so
called __doc__-strings of Python instance methods. The
bodies of instance methods are execution parts of the
patterns. Parameters passed to the methods are results of
corresponding pattern queries inference. Instances itself
are modules, i.e. a set of patterns and algorithms that
transform part of PIM into a part of PSM. Consider the
following example of patterns which are supposed to
recognize and generate SQL query to create relational
database table for storing object instances of IS under
development.

class RulesMixing: # Set of patterns
 def rule_primitive_class(self, cls, oid, oidType):
 # figure out the basics of relation coding
 # in relational tables
 """ % this starts __doc__ string
 primitive_class(Cls, OIDAttr, OidType):-
 element(Cls, 'Class'),
 \+stereotype(Cls, 'abstract'),
 stereotype(Cls, 'OODB'),
 \+internal_only(Cls),
 stereotype(Cls, 'primitive'),
 attribute(Cls, OIDAttr),
 type(OIDAttr, OidType),
 stereotype(OIDAttr, 'OIDkey'),!.
 """ # this ends __doc__ string
 self.BASE_CLASS = cls
 # we found the root of the class hierarchy
 self.BASE_CLASS_NAME = self.getName(cls)
 self.OID_NAME= self.getName(oid)
 # attribute for object reference
 self.OID_TYPE = self.coerceAttrType(oid, oidType)
 # choose a type for the object reference
 return self.BASE_CLASS_NAME, cls, oid,
 self.OID_NAME
 # the values are passed to a for statement.
 def rule_persistent_class(self, cls):
 # a class is persistent if its instances
 # are to be stored and it is not a type.
 """
 persistent_class(Cls):-
 element(Cls, 'Class'),
 \+stereotype(Cls, 'abstract'),
 stereotype(Cls, 'OODB'),\+internal_only(Cls).
 """
 # this pattern has no body

class SQLTranslator(Translator, RulesMixing): # a module
 # it generates SQL-script of database structure
 def genClass(self, cls):
 # Generate SQL-script for a class cls
 answer = [] # list of source lines

Figure 1. MDA reflects the Software Life Cycle

Applied Internet and Information Technologies 2012, REGULAR PAPERS

Page 242 of 502

 if cls in self.generated: # is it already
 return answer # generated?
 for _, parent in self.query('class_parent',
 (cls, '#')): # generate all ancestors
 .
 name=self.getName(cls) # name of the class
 doc=cls.getDocumentation() # documentation
 if doc: # is it not empty?
 answer.append('/*\n%s\n*/' % doc)
 attribs = self.genSchema(cls)
 # generate table attributes
 if not self.isEmpty(attribs):
 answer.append("CREATE TABLE %s (" % name)
 answer.append(attribs) # table attributes
 answer.append(")%s;" %
 self.getTableType(cls))
 else:
 print "The class has no attributes."
 self.addFact("oodb_table('%s', '%s')" %
 (cls.getId(), name)) # assert conclusion
 # on a relation of class to table
 self.generated.append(cls)
 return answer # return generated code

Method genClass is executed from outside for each
answer Cls of persistent_class(Cls) query. Structure of the
base class, recognized by rule rule_primitive_class,
greatly affects a way of object references representation of
the rest of the relational database tables.

This approach has cumulative advantage over above
mentioned techniques: expressive production-like
transformation representation, powerful imperative and
retrospection abilities of Python, existing template engines
used in Python web frameworks, and it is a tool, which is
not tied to specific set of development environments.

We develop a software designing technique for MDA
based on multistage transformation of PIM into a PSM
consisting of specific submodels (fig. 1). To transform the
UML models its XMI (XML Metadata Interchange) file is
loaded. This format is a kind of XML, so DOM2 API is
used to access PIM’s structure. XMI is a standard data
format supported by various proprietary and free software
technologies and libraries. The DOM2 tree is translated
into Prolog facts by means of requests from patterns.
Object Constraint Language (OCL) expressions are
extracted from PIM and represented as syntax trees.

At first a general reasoning about object structure is
carried out, basic properties are recognized. Other
modules use the reasoning results to refine
implementation variants of synthesized program objects.

Each module specifies PIM’s structures with additional
facts about existing structures and creates new objects and
relations. For example, SQL database transformation
module merges inherited abstract part of attributes to the
class and generates table description on the base of the
merge. The process is controlled by scenario represented
as a list of leaf nodes to be executed. If all nodes of the
scenario are executed and all their solutions (queries) are
satisfied and processed, then the set of all the facts in
working memory defines PSM. The source code is
generated on the base of obtained PSM. A generator
module executes a query and fills in a source code
template with query results.

Results of transformations and code generation are
combined in object libraries. Objects from libraries are
used in construction of business-logics of developed IS.
Programmers supplement generated code by inheriting it
in new classes. This approach partially solves the problem
of generated source code modification by programmers.

The XMI file can contain not only the structure
information, but also some semantic values for its
elements. This information used to increase the control
over the transformation procedure, in particular, for
filtering information by using some criteria. UML have
the following semantic definition language structures:

1. Stereotypes to create new elements of UML;

2. Tagged values to create properties for the
elements;

3. Constraints to formally define logical constraints,
invariant, pre- and postconditions for a method
invocation.

Let us consider a simple example. Assume that there
exists a class in an UML Class Diagram that has at least a
string field name. If we mark the class with, e.g.,
«Reference Book» stereotype, then all many-to-one
relations to the class can be interpreted in relational
database context as many-to-one relation and
corresponding tables, and reference fields ID are
generated. Having recognized the stereotype and the
relation, user interface generator can construct a widget
and its controller (in sense of Model-View-Controller
paradigm) to select appropriate record from the reference
book and store the reference book ID in corresponding
table and object. Now, the generated code in various
subsystems is logically and mutually depended.

In order to adopt the transformation engine and its
knowledge base to developer’s instrumental software and
technologies, one imports Python module, inherits and
modifies its set of patterns and generation modules,
specifies new module in scenario. In the application
example in the following section we used inheritance to
refine a generic SQL relational table transformation to
specific properties of MySQL server.

III. APPLICATION OF THE TECHNIQUE TO CONSTRUCT A

FRAMEWORK OF AN INFORMATION SYSTEM IN MEDICINE

In 2005 we applied our transformation engine in the
life cycle of medical IS named “Population cancer
registry” development for recording cases of cancer

Figure 2. Architecture of transformation engine

Applied Internet and Information Technologies 2012, REGULAR PAPERS

Page 243 of 502

incidence in Irkutsk Regional Oncology Center (hereafter
hospital). The IS was to accumulate data on the cases
happened in Irkutsk Region (Irkutsk Oblast). The territory
is about 768 000 km

2
, and its population is about 2 500

000 people (2011); every year around 8000-9000 cases are
recorded. The necessity of the development is dictated by
Ministry of Health and Social Development of the Russian
Federation by a corresponding directive in 1999.

Previous version of the IS was based on Microsoft
Access’95 and designed as stand-alone applications with
common server database developed since 1999. As in
2005 there were no high bandwidth channels to the
hospitals subordinate clinics and oncology medical
offices, as well as most of the offices were not connected
to Internet at all, the input data came to the clinic as filled
in printed forms by regular mail or with courier every
month. Then all the forms were recorded into database by
stuff of organizational-methodical department of hospital.
The IS and operating system peculiarities did not allow
the usage of the system for medical doctors directly in
their offices: response time of IS was very low and there
were no obvious ways of overcoming that problem; the
system had also closed proprietary design.

In that time Russian government began to support a
number of programs of development, including digital
medicine and communication channels quality and
productivity improvement. In the same time Internet
technologies and software as a service started to dominate
on market; a number of open-source technologies become
mature. Hospital and regional administration decided to
realize new version of IS, which are to be the international
platform of network infrastructure accumulating all
oncology data streams from various medical information
systems in the region. There was also financial support in
amount of 10 400 euro for the initial state of the project.

Initial condition to the IS development was somewhat
indefinite: there were a diversity of hardware and software
(out-of-date personal computers and operating systems);
structures of input documents though were approved by
the above mentioned decree, but they were informal; there
was a lack input data to required report forms; also there
was no standard strategy of IS implementation as an
application for user. In this situation we decided to
organize development mostly on an abstract level, which
would allow generating frameworks for randomly
appeared new requirements.

As the UML editing tool we used Gentleware
Poseidon for UML Community Edition v. 3. The IS’s PIM
was presented as the marked UML Class Diagram and
contained more than 100 classes, interfaces and other
auxiliary structures. PIM represented whole class/instance,
records and enumeration structures. Most of the classes
were marked by «OODB» stereotype to be stored in
relational database MySQL-4.1 as objects. Some of the
classes were marked as «Reference book». Records
represented joined lists of attributes, which were included
in class as a complex structural attribute (e.g. passport
data), but stored in the same table as their class.
Enumerations are structures, whose attributes used as
constants in database, business logics code and user
interface.

Attributes of classes were marked with various tag
values. For example, tag value “name” denote a notation
of the attribute in user interface forms, “index” (true or
false) suggested to the transformation engine to add an
index in database definition for the attribute; “index_kind”
(btree, hash, etc.) refined the variant of index engine; set
of “widget:…” tag values controlled variants of attribute
user interface representation. By means of the tag values
we denoted the storing engines for persistent classes,
grouping attributes on user interface forms, the layout was
implemented manually.

As target platform the following software were
chosen: Gentoo Linux OS; MySQL-4.1/5.1 with InnoDB
and MySAM engines as relational database server; object-
oriented Internet application framework Zope-2.7.3 and
Python programming language as business-logic
implementation environment; XML as data presentation
format. Transformation engine has about ten modules;
each module has about ten original (noninherited) rules. In
fig. 3 architecture of the IS is presented.

The constructed transformation system has generated a
complete DDL script for database, representing all the
classes as objects referring each other through object
identifier OID and some of retrospection instance data
(inheritance between classes); complete set of business-
logics Zope objects represented as Zope folders with full
support of contexts; complete flexible templates for
object-relational layer between MySQL tables and Zope
objects, the layer engine based on Zope SQL Methods; set
of markup Zope Page Templates for the presentation
format for export/import objects; template of Pascal
language program for data export from previous version
of IS; C-language efficient data importer from XML-
representation; templates of input fields for user interface.
For Zope objects we have also generated methods
reflecting class-to-class relations, e.g., methods to get all
tumor cases for a patient. The transformation engine has
also generated the metadata, which used by Zope methods
for special utility purposes. Our instrumental software has
generated 91 tables for database and more than 8000 lines
of source code. The kernel of the transformation engine
and most of the rules was implemented in the context of
the project for 3 human-months. The transformation
cycles took about 1 minute.

The generated source code, methods and modules
were integrated into IS with calling the code or inheriting

Figure 3. Architecture of Population cancer register medical IS

Applied Internet and Information Technologies 2012, REGULAR PAPERS

Page 244 of 502

it, so we could regenerate the framework without loss of
later made changes of source code. Database data integrity
supported manually and was periodically reimported from
the database of the previous version. User interface was
constructed manually from widgets, supplied by object’s
methods.

Using the MDA in this project we faced a number of
problems. To the end of the design stage PIM occupied 4
m

2
 and could be displayed only partially on the screen,

some time was spent for periodical layout adjustment
(location and color) of the model classes by their
properties. Memory integrated YAP (Prolog) and Python
transformation engine started to crash on big-size input
PIM, we switched to less productive process- and stream-
integrated version of the engine. Practictitioner
programmers did not share our optimism about MDA
usage: they preferred verbal form of modeling; they were
forced to implement report generation subsystem. Some
years later Gentleware decided to charge for new and all
old versions of Poseidon for UML CE, but none of
investigated free UML editors can load our model now.

At the end of the design stage we had almost
functional IS supporting most of required function but it
have somewhat ugly interface: medical stuff was too busy
to help us with testing and refining. Presently the PIM is
used on-site programmers as source information for
recreation of production grade version on
Django/PostgreSQL platform. Now the IS is used in the
oncology hospital.

IV. CURRENT DEVELOPMENT OF THE TECHNIQUE

Further development of the technique is aimed at
raising performance and expressive abilities of the
transformation system, as well as its reliability. Main
problem is that it is hard to provide efficient and in the
same time sound integration of Prolog and Python: both
systems have its memory management units but different
memory management strategies. We decided to shift the
system to use powerful expressive abilities of LogTalk
Prolog [7] macro package supplying it with an imperative
subsystem and a template engine. LogTalk is an object-
oriented logic programming language that can use most
Prolog implementations as a back-end compiler and
inference engine. As a multi-paradigm object-oriented
language, it includes support for prototype and class
inheritance, protocols/interfaces descriptions, component-
based programming through category-based composition,
event-driven programming, and high-level multi-threading
programming.

In the new implementation [8] of the transformation
we take advantage of the same object-oriented hierarchical
modular architecture as before, but set up another goal - to
support transformation in both directions: from abstract
PIM to source code and from the source code to abstract
models. This should partially allow developers to

 modify generated source code and conserve
changes, i.e., account them in PSM and PIM;

 develop software on the various levels of
abstraction;

 accumulate libraries of complexes of models and
their implementations as well as transformation
modules.

The results of the investigation will be realized in a
software development environment, integrating UML
design software and source code IDEs. The integration
engine is to be based on change propagation [9]: the
modifications made are recognized by the environment
and pushed to other utilities.

A. LogTalk transformation module example

Let’s consider a code example written in the LogTalk
programming language. We have the following interface
class for access to the loaded XMI DOM2 tree. This class
is used in Model class, that is a primarily recognize the
model in XMI file.

:- object(class, instantiates(class)).
 :- private(attributes_list/1,

operations_list/1,
.
parse_operations/2).

 :- public(new/5,
new/2,
name/1,
operations/1,
attributes/1).

.
:- end_object

Next code is an example of a transformation procedure

:- object(TransformToSQL(Class, Type))
.
%Parametric object allows to customize some parameters
 database(Database) :-
 parameter(1, Database).
 class(Class) :-
 parameter(2, Class).
 databasetype(DatabaseType) :-
 parameter(3, DatabaseType).

gen_sql(Name, Attributes, Output) :-
append(“CREATE TABLE”, class::Name,

Output),
append(Output, ::gen_attributes(

class::attributes,
Attributes), Output),

append(Output, ::databasetype, Output).
.
:-end_object

Call to the gen_sql method looks like
TransformToSQL(Student, “Inno DB”).

B. Change Propagation

Definition of change propagation in [9] from the MDA
pint of view can be interpreted as a way of transformation.
Transformation engine compares two versions of PIMs,
recognizes the difference and corrects PSM and source
code in the corresponding points of change. The
transformation approach uses specially stored links
between objects from PIM and corresponding generated
object in PSM. When an object changes or deleted its
image in PSM traced by its link.

We suggest extending this idea to allow the
propagation in both directions, including from PSM to
PIM. This should results in the following additional
advantages:

Applied Internet and Information Technologies 2012, REGULAR PAPERS

Page 245 of 502

 Record the stages of the development as
complexes of abstract models and corresponding
source code fragments;

 Allow designers to transfer the model complexes
between projects.

To deal with stated extension and planned features we
proposed to apply the theory of systems of complexes
(configurations), successfully used in geography research
[10], to software life cycle, implying that the software
development is a natural process. The theory shows how
to represent model elements, relations between elements,
transformations and links as complexes, as an element of a
category. In [10] we shown that as the model complex and
a change are elements of the same set of complexes, hence
the change is expressed with the same language structures
as the model complex. Similar arguments are true for
transformation modules; they can transform both the
model and its change.

Some practical examples have been found, like diffutils
package of any Unix distribution, which demonstrate the
investigation results. The package allows programmer
figuring out the differences between two versions of a
source code text file (patch file) and apply the patch file to
the sources. The package contains two main utilities diff
and patch. The first utility compares two ASCII or
Unicode texts and produces a new text file with a
representation of the difference between input files.

--- t1.cpp 2012-02-12 11:50:42.668030039 +0900
+++ t2.cpp 2012-02-12 11:52:44.944957992 +0900
@@ -2,6 +2,7 @@
 char * name;
 };

-class Pupil:Person {
- Class * cls;
+class Student:Person {
+ char * stud_no;
+ Group * group;
 }

In this example shows that the difference is shown
with the same ASCII or Unicode characters: the text is
shifted by one character right so the first column became
control column, where characters define a modification.
The space character denotes a context of the text part
under change. The minus character denotes part that to be
removed, and plus character denotes the new text
composition to be added into the context. As in one patch
file the whole project change set can be stored, special
format substrings “---” and “+++” are used to denote the
particular files, and “@@” is used to denote general
relative position of the first line of the context in the files.

Links from PIM to PSM express context of changes more
precisely than patch file format, and allow back
transformation engine to recognize the differences. We
suggest using an intermediate text format between PSM
and generated source code. This format reflects the links
and also account that the generated source code in a
general case is not a flat text anymore. The format can be
constructed on the base of a D.Knuth’s Literate
programming [11] implementation. Literate program itself
is a tagged tree representation of computer program, and
those tags can be generated from PIM and PSM and

reflect the links and abstract objects of the model. In
opposite direction the changes of the source code now can
be more precisely recognized having the tags at hand.
There are well developed tangling and untangling
algorithms (reverse direction), e.g. in [12].

V. CONCLUSION

We have considered an existing implementation of
transformation engine for Model Driven Architecture
approach to software development in the case of
information systems. The approach is based on mixing
high level object-oriented programming language Python
and logic language Prolog. The transformation is
represented as network of modules. Each module carries
on a subtransformation and implemented in a pattern-
directed fashion. An example of application in medicine
and further development of the system is considered.

One of the aims of the research is to construct a
software development tools based on analogy. For
example, having stores in a revision control systems all
the states, models and stages of MDA software
development as change complexes, it probably be possible
to construct new sequence of differences for new original
model.

REFERENCES

 D.Frankel “Model driven architecture : applying MDA to
enterprise computing”. - New York: Wiley, 2003.

 Si Alhir. Understanding the Model Driven Architecture (MDA)
URL:
http://www.methodsandtools.com/archive/archive.php?id=5.
(access date-29.09.2012)

 M.M.Gorbunov-Posadov, “The way to grow a program”, Open
Systems Journal, 2000, N. 10, pp. 43–47. (in Russian) [English
version URL: http://www.keldysh.ru/pages/softness/growE.htm
(access date-29.09.2012)]

 K.Czarnecki, U.Eisenecker. Generative Programming: Methods,
Tools, and Applications, Addison-Wesley, Reading, MA, USA,
2000. 864 p.

 M.B.Kuznetsov. “UML Model Transformation and its
Applications to MDA Technology”, Programming and Computer
Software, Russia, Vol.33, 2007, pp. 44-53.

 I.Bratko. “Prolog Programming for Artificial Intelligence”.
Addison-Wesley pub. co. 1986, 423 p.

 P.Moura “Logtalk: Design of an Object-Oriented Logic
Programming Language”. PhD thesis. Universidade da Beira
Interior, 2003. [See also, “Logtalk. Open source object-oriented
logic programming language”. URL: http://logtalk.org/ (access
date-29.09.2012)]

 E. A. Cherkashin, S. A. Ipatov. “Logical Approach to UML-model
processing of Informational Systems”. Journal of Conterporary
Techologies. System Analysis. Modelling. 2009. N 3 (23). pp. 91–
97. (in Russian)

 M. Alanen, I. Porres, "Change Propagation in a Model-Driven
Development Tool," in Presented at WiSME part of UML 2004,
2004.

 E.A.Cherkashin, V.V.Paramonov, et al, “Model Driven
Architecture is a Complex System”, E-Society Journal Research
and Applications. Volume 2, Number 2, 2011, pp. 15-23.

 D.E.Knuth. “Literate programming”. The Computer Journal,
27(2), 1984, pp. 97-111.

E.K.Ream. “Leo’s Home Page” URL:
http://webpages.charter.net/edreamleo/front.html (access date-
29.09.2012)

Applied Internet and Information Technologies 2012, REGULAR PAPERS

Page 246 of 502

