
Towards Certified Compilation of Financial
Contracts

Danil Annenkov Martin Elsman

University of Copenhagen
Dept. of Computer Science (DIKU)

{daan,mael}@di.ku.dk

NWPT, November 2016

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Motivation

Why do we need languages for financial contracts?

precise formulation of a contract

symbolic contract analysis and transformation

portfolio management

input for “pricing engines” through compilation to payoff expressions

increasing interest in “smart contracts” running on blockchain
platforms

Why go “certified”?

by “certified” we mean that we have a formal proof that a program
has the desired properties

correctness is crucial

proof assistants can be used to write proofs and even “extract” a
correct implementation!

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Motivation

Why do we need languages for financial contracts?

precise formulation of a contract

symbolic contract analysis and transformation

portfolio management

input for “pricing engines” through compilation to payoff expressions

increasing interest in “smart contracts” running on blockchain
platforms

Why go “certified”?

by “certified” we mean that we have a formal proof that a program
has the desired properties

correctness is crucial

proof assistants can be used to write proofs and even “extract” a
correct implementation!

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

What is a Contract DSL1?

allows for expressing a large variety of financial contracts

supports multi-party contracts

has a formal semantics

contract management operations and transformations are proven
correct wrt. the specified semantics

the contract DSL semantics along with all proofs are formalized in
the Coq proof assistant

1Patrick Bahr, Jost Berthold, Martin Elsman. Certified Symbolic Management of
Financial Multi-Party Contracts, ICFP2015

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Contract DSL language constructs

zero empty contract
transfer(p1, p2) transfer of one unit
scale(e, c) scaled contract
translate(t, c) translation into the future
both(c1, c2) composition of two contracts
checkWithin(e, t, c1, c2) generalized conditional

An expression sublanguage (e) features arithmetic and boolean
expressions along with observable values (stock prices etc.)

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Contract DSL : Contract Templates

Template feature extension: The Contract DSL allows template variable
instead of just fixed numbers for some language constructs

Original Extended
translate(n, c) translate(t, c)
checkWithin(e, n, c1, c2) checkWithin(e, t, c1, c2)

Where t ::= n | v . Variables v are interpreted in a template environment
TEnv

Compiling contract templates leads to extensive code reuse

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Contract DSL : Contract Templates

Template feature extension: The Contract DSL allows template variable
instead of just fixed numbers for some language constructs

Original Extended
translate(n, c) translate(t, c)
checkWithin(e, n, c1, c2) checkWithin(e, t, c1, c2)

Where t ::= n | v . Variables v are interpreted in a template environment
TEnv

Compiling contract templates leads to extensive code reuse

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Contract DSL : Contract Templates

Template feature extension: The Contract DSL allows template variable
instead of just fixed numbers for some language constructs

Original Extended
translate(n, c) translate(t, c)
checkWithin(e, n, c1, c2) checkWithin(e, t, c1, c2)

Where t ::= n | v . Variables v are interpreted in a template environment
TEnv

Compiling contract templates leads to extensive code reuse

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Example

“European options are contracts that give the owner the right, but not
the obligation, to buy or sell the underlying security at a specific price,
known as the strike price, on the option’s expiration date”
(taken from: investopedia.com)

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Example

“European options are contracts that give the owner the right, but not
the obligation, to buy or sell the underlying security at a specific price,
known as the strike price, on the option’s expiration date”
(taken from: investopedia.com)

Take: expiration date = 90 days into the future, strike = 100.0

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Example

“European options are contracts that give the owner the right, but not
the obligation, to buy or sell the underlying security at a specific price,
known as the strike price, on the option’s expiration date”
(taken from: investopedia.com)

Take: expiration date = 90 days into the future, strike = 100.0

European Call Option

translate(90,

if(obs(AAPL,0) > 100.0,

scale(obs(AAPL,0) - 100.0, transfer(you, me)),

zero))

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Example

“European options are contracts that give the owner the right, but not
the obligation, to buy or sell the underlying security at a specific price,
known as the strike price, on the option’s expiration date”
(taken from: investopedia.com)

Take: expiration date = T days into the future, strike = S

European Call Option Template

translate(T,

if(obs(AAPL,0) > S,

scale(obs(AAPL,0) - S, transfer(you, me)),

zero))

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Contract DSL Semantics

The semantics of a contact is given by a Trace:

C JcK : ExtEnv × TEnv ⇀ Trace

The Trace is a mapping from time to transfers between parties:

Trace = N→ Party × Party→ R

The trace of a contract depends on an external environment ExtEnv
containing information about observable values.
The template environment TEnv maps template variables to values. The
semantics does not depend on any stochastic aspects

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Contract DSL Semantics

The semantics of a contact is given by a Trace:

C JcK : ExtEnv × TEnv ⇀ Trace

The Trace is a mapping from time to transfers between parties:

Trace = N→ Party × Party→ R

The trace of a contract depends on an external environment ExtEnv
containing information about observable values.
The template environment TEnv maps template variables to values.

The
semantics does not depend on any stochastic aspects

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Contract DSL Semantics

The semantics of a contact is given by a Trace:

C JcK : ExtEnv × TEnv ⇀ Trace

The Trace is a mapping from time to transfers between parties:

Trace = N→ Party × Party→ R

The trace of a contract depends on an external environment ExtEnv
containing information about observable values.
The template environment TEnv maps template variables to values. The
semantics does not depend on any stochastic aspects

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Motivation for a Payoff Language

Pricing (simulation using Monte-Carlo techniques) requires
“snapshot” value of the contract

Discounting should be taken into account

Compiling to a target language should be (relatively) easy

Several target languages (depends on the pricing engine)

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Payoff Language: syntax and semantics

Syntax

Expression language with conditionals

il ::= unop(il) | binop(il , il) | if(il , il , il) | loopif(il , il , il , t)

some additional domain-specific constructs

model(l , t) | disc(t) | payoff(t, p, p) | now
and template subexpressions

t ::= n | i | v | tplus(t, t)

Semantics

IL JilK : ExtEnv × TEnv × Disc× Party × Party ⇀ R + B

where Disc = N→ R is a discounting function.

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Payoff Language: syntax and semantics

Syntax

Expression language with conditionals

il ::= unop(il) | binop(il , il) | if(il , il , il) | loopif(il , il , il , t)

some additional domain-specific constructs

model(l , t) | disc(t) | payoff(t, p, p) | now

and template subexpressions

t ::= n | i | v | tplus(t, t)

Semantics

IL JilK : ExtEnv × TEnv × Disc× Party × Party ⇀ R + B

where Disc = N→ R is a discounting function.

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Payoff Language: syntax and semantics

Syntax

Expression language with conditionals

il ::= unop(il) | binop(il , il) | if(il , il , il) | loopif(il , il , il , t)

some additional domain-specific constructs

model(l , t) | disc(t) | payoff(t, p, p) | now
and template subexpressions

t ::= n | i | v | tplus(t, t)

Semantics

IL JilK : ExtEnv × TEnv × Disc× Party × Party ⇀ R + B

where Disc = N→ R is a discounting function.

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Payoff Language: syntax and semantics

Syntax

Expression language with conditionals

il ::= unop(il) | binop(il , il) | if(il , il , il) | loopif(il , il , il , t)

some additional domain-specific constructs

model(l , t) | disc(t) | payoff(t, p, p) | now
and template subexpressions

t ::= n | i | v | tplus(t, t)

Semantics

IL JilK : ExtEnv × TEnv × Disc× Party × Party ⇀ R + B

where Disc = N→ R is a discounting function.

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Compiling Contracts to Payoffs

We compile both “levels” - contracts c and expressions e - into single
payoff expression language

The compilation functions:

τe J−K : Expr × TExprZ ⇀ ILExpr

τc J−K : Contr × TExprZ ⇀ ILExpr

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Compiling Contracts to Payoffs

τe Jobs(l , i)Kt0
= model(l , tplus(t0, i))

τc Jtransfer(p1, p2)Kt0
= mult(disc(t0), payoff(t0, p1, p2))

τc Jscale(e, c)Kt0
= mult(τe JeKt0

, τc JcKt0
)

τc JzeroKt0
= 0

τc Jtranslate(t, c)Kt0
= τc JcKtplus(t0,t)

τc Jboth(c0, c1)Kt0
= add(τc Jc0Kt0

, τc Jc1Kt0
)

τc JcheckWithin(e, t, c1, c2)Kt0
= loopif(τe JeKt0

, τc Jc0Kt0
, τc Jc1Kt0

, t)

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Compiling Contracts to Payoffs: An Example

Original contract

translate(t0,

both(scale(100.0, transfer(you,me)),

translate(t1,

if(obs(AAPL,0) > 100.0,

scale(obs(AAPL,0) - 100.0, transfer(you, me)),

zero)))

Compiles to (using infix notation for binary operations)

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Compiling Contracts to Payoffs: An Example

Original contract

translate(t0,

both(scale(100.0, transfer(you,me)),

translate(t1,

if(obs(AAPL,0) > 100.0,

scale(obs(AAPL,0) - 100.0, transfer(you, me)),

zero)))

Compiles to (using infix notation for binary operations)

... + ...

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Compiling Contracts to Payoffs: An Example

Original contract

translate(t0,

both(scale(100.0, transfer(you,me)),

translate(t1,

if(obs(AAPL,0) > 100.0,

scale(obs(AAPL,0) - 100.0, transfer(you, me)),

zero)))

Compiles to (using infix notation for binary operations)

100.0 * disc(t0) + ...

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Compiling Contracts to Payoffs: An Example

Original contract

translate(t0,

both(scale(100.0, transfer(you,me)),

translate(t1,

if(obs(AAPL,0) > 100.0,

scale(obs(AAPL,0) - 100.0, transfer(you, me)),

zero)))

Compiles to (using infix notation for binary operations)

100.0 * disc(t0) + if (...,

...,

...)

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Compiling Contracts to Payoffs: An Example

Original contract

translate(t0,

both(scale(100.0, transfer(you,me)),

translate(t1,

if(obs(AAPL,0) > 100.0,

scale(obs(AAPL,0) - 100.0, transfer(you, me)),

zero)))

Compiles to (using infix notation for binary operations)

100.0 * disc(t0) + if (model(AAPL,t0+t1) > 100.0,

...,

...)

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Compiling Contracts to Payoffs: An Example

Original contract

translate(t0,

both(scale(100.0, transfer(you,me)),

translate(t1,

if(obs(AAPL,0) > 100.0,

scale(obs(AAPL,0) - 100.0, transfer(you, me)),

zero)))

Compiles to (using infix notation for binary operations)

100.0 * disc(t0) + if (model(AAPL,t0+t1) > 100.0,

(model(AAPL,t0+t1) - 100.0) * disc(t0+t1),

0.0)

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Why “certified”?

The semantics and the symbolic contract transformations are
verified in the Coq proof assistant1

The correctness of the compilation into payoff expressions is crucial
for the result of pricing

Having a proof of correctness, we can use code extraction techniques
to obtain a correct implementation

1formalization by Bahr et al.
Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Compilation soundness

Assume parties p1 and p2, discount function d : N→ R and
environments ρ : ExtEnv, δ : TEnv

Theorem (soundness for contract expressions)

If τe JeK = il and E JeKρ,δ = v1 and IL JilKρ,δ,d,p1,p2
= v2

then v1 = v2.

Theorem (soundness for contracts)

If τc JcK = il and C JcKρ,δ = trace,

where trace : N→ Party × Party→ R,

and IL JilKρ,δ,d,p1,p2
= v

then
∑HOR(c,δ)

t=0 d(t)× trace(t)(p1, p2) = v .

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Performance challenges

Contracts evolution: at each time step a contract becomes a new
“smaller” contract (by reduction)

Reductions thus requires us to recompile a contract to a payoff
expression and further to a target language

Pricing engine could use inlining for optimization purposes →
contract recompilation could require to recompile part (or whole)
pricing engine

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Performance challenges: possible solutions

Write an interpreter for the payoff language
3 general
7 hard to implement efficiently on GPUs
7 still requires compilation contracts to payoffs

Parameterize payoff expression with “current time” tnow and “cut”
payoffs before tnow at runtime
3 requires less modification to the pricer
3 less work to prove correctness and implement in Coq
7 overhead due to additional checks

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Performance challenges: possible solutions

Write an interpreter for the payoff language
3 general
7 hard to implement efficiently on GPUs
7 still requires compilation contracts to payoffs

Parameterize payoff expression with “current time” tnow and “cut”
payoffs before tnow at runtime
3 requires less modification to the pricer
3 less work to prove correctness and implement in Coq
7 overhead due to additional checks (but not that bad)

Experiment

The estimated overhead was around 2.5 percent for hand-written
implementation of guard condition for simple contracts

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Cutting payoffs

The cutPayoff() function adds guard condition to each payoff construct
(showing only most important case):

cutPayoff : ILExpr→ ILExpr

. . .

cutPayoff(payoff(t, p1, p2)) = if(t < now , 0, payoff(t, p1, p2))

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

cutPayoff properties

If we evaluate a compiled payoff expression after application of
cutPayoff() with tnow = 0 we should get the same result as evaluating
the expression before applying cutPayoff()

Theorem

Assume parties p1 and p2, discount function d : N→ R and
environments ρ : ExtEnv, δ : TEnv.

For any P : ILExpr, if tnow = 0 then

IL JPKρ,δ,d,tnow ,p1,p2
= IL JcutPayoff(P)Kρ,δ,d,tnow ,p1,p2

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

cutPayoff properties

The cutPayoff() function should be sound with respect to contract
reduction semantics.

Theorem (soudness wrt. contract reduction)

Assume parties p1 and p2, discount function d : N→ R and
environments ρ′ : ExtEnv, δ : TEnv and a partial environment
ρ ∈ ExtEnvP such that ρ ⊆ ρ′.
For any well-typed contract c , if c =⇒ρ c ′, C Jc ′Kρ′/1,δ = trace,

τc JcK = P and IL JcutPayoff(P)Kρ′,δ,1,d,p1,p2
= v then∑HOR(c′)

t=0 d(t + 1)× trace(t) = v

Where ρ′/1 means environment ρ “advanced” one step.

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Conclusion

Contract DSL extended with template expressions → improved code
reuse

designed Payoff Intermediate Language

formalization of the Payoff Language semantics in Coq (including
proofs on compilation soundness)

payoff expressions parameterized by time → captures contract
reduction in runtime → allows to avoid recompilation

use of code extraction Coq code extraction mechanism to obtain
correct compilation function

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Conclusion

Contract DSL extended with template expressions → improved code
reuse

designed Payoff Intermediate Language

formalization of the Payoff Language semantics in Coq (including
proofs on compilation soundness)

payoff expressions parameterized by time → captures contract
reduction in runtime → allows to avoid recompilation

use of code extraction Coq code extraction mechanism to obtain
correct compilation function

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Conclusion

Contract DSL extended with template expressions → improved code
reuse

designed Payoff Intermediate Language

formalization of the Payoff Language semantics in Coq (including
proofs on compilation soundness)

payoff expressions parameterized by time → captures contract
reduction in runtime → allows to avoid recompilation

use of code extraction Coq code extraction mechanism to obtain
correct compilation function

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Conclusion

Contract DSL extended with template expressions → improved code
reuse

designed Payoff Intermediate Language

formalization of the Payoff Language semantics in Coq (including
proofs on compilation soundness)

payoff expressions parameterized by time → captures contract
reduction in runtime → allows to avoid recompilation

use of code extraction Coq code extraction mechanism to obtain
correct compilation function

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Conclusion

Contract DSL extended with template expressions → improved code
reuse

designed Payoff Intermediate Language

formalization of the Payoff Language semantics in Coq (including
proofs on compilation soundness)

payoff expressions parameterized by time → captures contract
reduction in runtime → allows to avoid recompilation

use of code extraction Coq code extraction mechanism to obtain
correct compilation function

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Future Work

proof of soundness wrt. multi-step contract reduction

external environments as arrays (implement reindexing and prove
properties)

make proofs nicer (clean and modular)

integration of extracted code to the HIPERFIT Portfolio
Management Prototype

investigate connection to Smart Contract and to blockchain-related
technology

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

Thank you!

Thank you! Questions?

Danil Annenkov, Martin Elsman Towards Certified Compilation of Financial Contracts

