
Code Extraction from Coq to ML-like languages

Danil Annenkov1, Mikkel Milo2, and Bas Spitters1

1 Concordium Blockchain Research Center, Aarhus University, Denmark
2 Department of Computer Science, Aarhus University, Denmark

Abstract

The Coq code extraction feature produces executable code in conventional functional languages that can be

integrated with existing components. Currently, Coq features extraction into OCaml, Haskell and Scheme. Many

new target languages are not covered by the standard Coq extraction, such as languages for smart contracts and

web development. Moreover, the extraction procedure is written in OCaml and is not verified. Implementing

extraction in Coq itself allows for verification of the extraction process. We implement an extraction pipeline by

extending the MetaCoq verified erasure with proof-generating passes and verified optimisations. We support sev-

eral languages from the ML family in our pipeline: two languages for smart contracts (Liquidity and CameLIGO)

and the Elm programming language. Our experience shows the pipeline can handle practical use cases and can

be extended with more target languages including the ML family.

1 Introduction

The Coq extraction feature is essential for producing executable code in conventional functional languages
that can be integrated with existing components. Currently, Coq features extraction into OCaml, Haskell
and Scheme [4]. Nowadays, there are many new target languages that are not covered by the standard
Coq extraction. Moreover, the extraction procedure is written in OCaml and is unverified. An example
of a domain that experiences rapid development and the increased importance of verification is the smart
contract technology. We explored this direction and addressed the verification issue in our previous
work [1], where we presented an extraction pipeline based on MetaCoq verified erasure. We would like
to present an extension of our previous work with (i) an improved extraction pipeline; (ii) a new target
smart contract language CameLIGO; (iii) a verified web application that can be extracted to the Elm
programming language.

The pipeline Our pipeline is presented in Figure 1. The green items are our contributions (including
the previous work) and the items marked with ∗ are verified in Coq. We extensively use the features
provided by the MetaCoq project in our development [6]. We start by developing a program in Gallina
that can use rich Coq types in the style of certified programming (see e.g. [3]). In the case of smart
contracts, we can use the machinery available in ConCert to test and verify properties of interacting
smart contracts. We obtain a Template Coq representation1 by quoting the term. We then apply a
number of certifying transformations to this representation. This means that we produce a transformed
term and a proof term, witnessing that the transformed term is equal to the original in the theory of Coq.
The term in Template Coq is then translated to PCUIC.2 We obtain an erased term by applying the
verified erasure of MetaCoq and our erasure procedure for types. By λ�+, we mean the untyped calculus
of extracted programs (also part of MetaCoq), which we enrich with data structures required for type
extraction. From the λ�+ representation we can obtain code in one of the supported target languages.
In this work, we focus our attention on Rust and Elm (see more about smart contract extraction in [1]).3

2 Extracting to Liquidity and CameLIGO

Blockchain and distributed ledger technology experience rapid development at the moment. Smart con-
tracts are an important part of this technology. Put simply, smart contracts are programs running on
top of a blockchain, which often control big amounts of cryptocurrency and cannot be changed after de-
ployment. Unfortunately, many vulnerabilities have been discovered in smart contracts and this has led
to huge financial losses (e.g. TheDAO, Parity’s multi-signature wallet), making them important targets
for formal verification. Functional smart contract languages has been adopted by several blockchains
and taking a step towards making smart contracts safer. Smart contracts in such languages are (partial)
state transition functions: contract : msg ∗ storage → operation list ∗ option storage that take some
user input msg, user-defined contracts state storage and return a list of operations (e.g. transfers, call to
other contracts) and a new storage value.

1The Template Coq representation basically reflects the actual Coq kernel
2Predicative calculus of cumulative inductive constructions, a “cleaned-up” version of the kernel representation [5]
3Our development is available on Github: https://github.com/AU-COBRA/ConCert

https://github.com/AU-COBRA/ConCert

 PCUIC λ□+

ConCert MetaCoq
Coq proof assistant Target languages

 Template
Coq

sm
ar

t
 c

on
tra

ct
s

ge
ne

ra
l

pu
rp

os
e

General Coq
programs

Figure 1: The pipeline

In ConCert, we are taking a further step by proving the properties of smart contracts that cannot
be guaranteed by type checking. We consider two functional smart contract languages: Liquidity [2]
and CameLIGO4 for the Dune and Tezos blockchains. Both languages are inspired by OCaml and share
many features with it. However, there are subtle differences both in the syntax and semantics making
it impossible to use the standard extraction of Coq to OCaml directly. In our previous work [1] we
presented extraction to Liquidity. Addressing some of the future work from this paper, we add the
support for CameLIGO, since it is quite similar to Liquidity. Below, we summarise our experience with
both languages, highlighting certain restrictions and differences.

Data types Data types are limited to non-recursive inductive types (also called variant types). In-
stead, the languages feature primitive container types like list and map along with operations on these
types. Therefore, Coq functions on lists and finite maps must be replaced with “native” versions in the
extracted code. We achieve this by providing a translation table that maps names of Coq functions to
the corresponding language primitives. Note that extraction of recursive data types will produce code
that will not compile.

Recursion Another limitation is that the support for recursive definitions is limited to tail recursion
on a single argument. Therefore, for recursive functions of several arguments, the arguments need to be
packed into a tuple. The same applies to data type constructors since the constructors take a tuple of
arguments. Currently, the packing into tuples is done by the pretty-printer after verifying that construc-
tors are fully applied. Recursive functions, which are not tail-recursive can be extracted, but will not be
accepted by the compiler.

Type inference and polymorphism Both languages require type annotations in order to type-check
a program. One source of ambiguity is the support of overloaded operations on numbers, which we
solve this issue by providing a “prelude” for extracted contracts that specifies all required operations
on numbers with explicit type annotations. CameLIGO requires even more type annotations: cases
like an empty list, or a constructor None of the option must be annotated with the full type. We have
implemented a general annotation mechanism that allows for attaching user-defined annotations to the
AST nodes. We use this mechanism to annotate the extracted terms with types, which we then use to
produce required type annotations at the pretty-printing stage.

Both languages have limited support of polymorphism (CameLIGO does not support user-defined
polymorphic definitions at all). This is problematic for programs that use, for example, the option

monad, which is an instance of the general Monad type class in Coq. We overcome this issue by inlining
such definitions using the proof-generating step of our pipeline. Without careful inlining, the code might
contain polymorphic definitions after extraction. We plan to use more sophisticated techniques such as
monomorphisation to specialise the extracted code.

No unsafe type casts Both languages offer no opportunity to force the type checking to succeed. That
means that certain code (that used OCaml’s Obj .magic in the standard Coq extraction) might be not
well-typed after extraction without a possibility to enforce the typing. Therefore, we do our best effort
to produce typable code. Providing various passes (like inlining) helps to overcome some limitations, like
the usage of functions with rank-2 types.

Example As an example, let us consider a simple counter contract with the state being just an integer
number and accepting increment and decrement messages: counter : msg → Z → option (list action ∗
Z). The main functionality is given by the two functions inc_counter and dec_counter. We use Coq’s
subset types to encode some invariants of these functions. E.g. for inc_counter we encode in the type
that the result of the increment is greater than the previous state. The original and the extracted code
for the inc_counter function is shown in Figure 2.

The extraction procedure removes all “logical” parts (e.g. proofs of being positive) from the original

4https://ligolang.org/

Program Definition inc_counter (st : Z)
(new_balance : {z : Z | 0 < z})

: {new_st : Z | st < new_st} :=
exist (st + proj1_sig new_balance) _ .
(* the proof is omitted *)

(a) Coq code

type storage = int

let exist a = a

let inc_counter (st : storage) (new_balance : int)
= exist (addInt st ((fun x→ x) new_balance))

(b) Liquidity code

Figure 2: Extraction of inc_counter

Coq code. This code is called from the counter function (not shown here) which performs input vali-
dation and constructs the argument of type {z : Z | 0 < z} to call inc_counter. Since the only way of
interacting with the contract is by calling counter, it is safe to execute inc_counter without additional
input validation.

3 Verified Elm web application

Elm is a general-purpose functional language used for web development. It is based on an extended
variant of the Hindley-Milner type system and has all core features of functional languages, which makes
it an easier extraction target, compared to Liquidity and CameLIGO. However, there is still one problem:
no functionality similar to OCaml’s Obj .magic. Therefore, we do our best effort to produce typable code.

As a demonstration, we develop an Elm-specific example in Coq: a simple web application inspired
by the Elm guide.5. We define the application model in Coq in the following way.

Record StoredEntry := { seName : string ; sePassword : string }.
Definition ValidStoredEntry := { entry : StoredEntry | entry . (name) 6= "" ∧8 ≤String .length p }.
Record Model :=
{ (** A list of valid entries such with unique user names *)

users : {l : list ValidStoredEntry | NoDup (seNames l)};
(** A list of errors after validation *)

errors : list string ;
(** Current user input *)

currentEntry : Entry }.

Users in our model are represented as a list of valid entries without duplication of names. We ap-
ply the usual certified programming style in Coq (using Program) in order to implement the logic of
a web application that manipulates only valid data. That is, we implement a model update function
updateModel : StorageMsg → Model → Model ∗ Cmd StorageMsg that takes a user input of type StorageMsg,
a model instance and produces a new model and (potentially) a command.6 We validate user input to
construct valid data instances that are used by the application’s logic. The Model type guarantees that
only valid data can be stored.

We use our extraction pipeline to obtain a fully functional Elm web application (provided that the
rendering functionality — a view — is written directly in Elm).7 The generated application is well-typed
in Elm, even though we have used dependent types extensively. The Elm architecture guarantees that the
only way our model is updated is when users interact with the web application by calling the updateModel

function. Therefore we know that in the extracted code the model invariant is preserved.

4 Conclusions

We have presented an extraction pipeline implemented completely in the Coq proof assistant. This makes
it suitable for providing strong correctness guarantees for the extraction process. The extraction relies
on the MetaCoq verified erasure procedure, which we extend with data structures required for extraction
to our target languages. The pipeline addresses new challenges originating from the target languages we
have considered and can be extended with new transformations, if required. The proof-generating pass
allows, for example, to inline and specialise some definitions which might not be typable after extraction,
since our targets do not feature unsafe type casts, like OCaml’s Obj .magic. New transformations can
be added to this pass without much effort (no need to modify the proof-generating part), provided
that they produce terms definitionally equal in the theory of Coq. More sophisticated transformations,
such as partial evaluation, can be applied without breaking the definitional equality. Our pipeline can
accommodate the techniques outlined in [7], which could be implemented in Coq directly (instead of a
plugin) using the meta-programming facilities of MetaCoq.

As a demonstration of our approach, we have implemented extraction to Liquidity, CameLIGO, Elm
and a subset of Rust. We believe that many other languages from the ML family can be added as targets
to the development by implementing a pretty-printer in Coq.

5The Elm guide: https://guide.elm-lang.org/architecture/forms.html
6Commands can be e.g. calls to the server. We do not use this functionality in our example.
7The demo of our extracted code is available at https://ellie-app.com/d2gtJ7WkB9Xa1

https://guide.elm-lang.org/architecture/forms.html
https://ellie-app.com/d2gtJ7WkB9Xa1

References

[1] Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, and Bas Spitters. “Extracting Smart Contracts
Tested and Verified in Coq”. In: CPP 2021. Virtual, Denmark: Association for Computing Machinery,
2021, 105–121. isbn: 9781450382991. doi: 10.1145/3437992.3439934. url: https://doi.org/10.
1145/3437992.3439934.

[2] Çagdas Bozman, Mohamed Iguernlala, Michael Laporte, Fabrice Le Fessant, and Alain Mebsout.
“Liquidity: OCaml pour la Blockchain”. In: JFLA18. 2018.

[3] Adam Chlipala. Certified Programming with Dependent Types: A Pragmatic Introduction to the Coq
Proof Assistant. MIT Press, 2013. isbn: 9780262026659.

[4] Pierre Letouzey. “Programmation fonctionnelle certifiée – L’extraction de programmes dans l’assistant
Coq”. PhD thesis. Université Paris-Sud, 2004.

[5] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter. “Coq
Coq Correct! Verification of Type Checking and Erasure for Coq, in Coq”. In: POPL’2019. 2019.
doi: 10.1145/3371076.

[6] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian Kunze,
Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. “The MetaCoq Project”. In: Journal
of Automated Reasoning (2020). issn: 1573-0670. doi: 10.1007/s10817-019-09540-0.

[7] Akira Tanaka. “Coq to C Translation with Partial Evaluation”. In: Proceedings of the 2021 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation. PEPM 2021. 2021, 14–31.
isbn: 9781450383059. doi: 10.1145/3441296.3441394.

https://doi.org/10.1145/3437992.3439934
https://doi.org/10.1145/3437992.3439934
https://doi.org/10.1145/3437992.3439934
https://doi.org/10.1145/3371076
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1145/3441296.3441394

	Introduction
	Extracting to Liquidity and CameLIGO
	Verified Elm web application
	Conclusions

